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I. SUMMARY
The objective of this investigation is to study the thermal behavior of
particle clouds during exposure to radiant éﬁgigy and, by means of experimental
measurements and theoretical analyses, to investigate methods for describing
quantitatively the basic process involved. It is anticipated that the results
will be useful in applied problems.

Lﬁhe radiant energy absorbed by particle clouds was measured while the
clouds were flowing inside a quartz tube through the walls of which energy was
being received from surrounding»radiators.i]The apparatus has previously been
described in detail. Experiments were performed during the first part of this
report period to characterize the radiation field to which the particle cloud
system was exposed. Neglecting spectral effects, the field may be described
by the flux distribution and the total amount of radiant energy impinging on the
aerosol conduit. The flux distribution was given in an earlier report, but the
absolute intensity of the field was not then reliably determined. 1In recent
experiments, the total amount of radiant energy impinging on the aerosol con-
duit was evaluated by calorimetric measurements using water flowing through
the system with the walls of the conduit blackened to absorb all incident energy.
The total energy absorbed divided by the surface area of the conduit gave the
average flux; it. was found to be 21,500 Btu/hr ftz. This number now permits g
more accurate evaluation of the efficiency of an absorbing cloud.

[,The energy absorbed by a cloud passing through the radiant field was
determined by two energy-balance procedures.\ One was made between the reference
conditions and the thermal state of the system at the entrance of the calorim-
eter, and the other was made between the conditions at the reference point and

the calorimeter exit. The former involved a calculation of the enthalpy




increase of the aerosol system with only air flowing and then with particles
present. The difference between these results gave the net effect of the
particles and the radiant energy absorbed by them. The second energy balance
involved the same procedure except a calculation for the calorimeter coolant
had to be taken into account also.

L Results were obtained for aerosols of different size fractions of ferrous
sulfide and cupric oxide.) The particle sizes of each ranged from 25 microns to
approximately 100 microns. The heat transfer data showed that the absorption
of radiation was essentially a linear function of concentration up to about
50 per cent by welight particles and that the absorption increased with decreas-
ing particle size. The particles were described in terms of minimum, mean, and
maximum dimensions. These characteristic measures were determined with the ex-
pectation that they will be used in future analyses.

More recent efforts have bheen directed toward evaluating from low temper-
ature nitrogen adsorption techniques the surface properties of the powders.
Specifically, the standard BET method, as well as a modified form of it, were
utilized to determine the contribution of internal surface area to radiation
absorption. It was anticipated that these total surface areas combined with
statistical measurements of particle dimensions would permit more complete
understanding of how absorption occurred. Results as yet are not conclusive,
but it appears that external surface area may be the significant parameter after
all. The problem is still being investigated.

To help resolve questions about particle surface area and the attenuation
of radiation, a mathematical mocdel is being developed from the basic equations
of radiant heat transfer to describe the energy absorbed by a particle cloud

in a circular cylinder. The development is being made in two steps. One is




to be valid when radiant energy scattering can be neglected and the second is
a modification to estimate these effects as they become more pronounced. Major

efforts are being concentrated on this analysis at the moment.




II. INTRODUCTION

The thermal behavior of particle clouds during exposure to a radiant hest
field is being studied. The ultimate goal is a quantitative description of the
basic processes involved. It is anticipated that the results will be applied
to practical problems, especially those in which aerosols within a cylindrieal
enclosure are exposed to thermal radiation both for purposes of protection and
energy utilization. This report presents the experimental data collected during
the fourth reporting period of the project and describes the processes currently
being examined for analyzing the results. Data reduction methods are also
discussed.

FPamiliarity with apparatus and procedures previously reported is presumed.




IIT. INVESTIGATIONS

A. Radiant Heat Flux Determinations

Basic to ali heat transfer calculations in this study is the radiant heat
flux penetrating the quartz enclosures and traversing the particle cloud. To
determine this quantity, experiments were conducted in which water was forced
to flow upward through the quartz to remove the heat absorbed by the system from
the radiant field. To assure total absorption of the impinging radiation, the
inner surface of the quartz conduit was coated with a thick slurry of graphite
suspended in a solution of plexiglass in ethylene dichloride. Upon evaporation
of the solvent, a continuous film of graphite suspended in plexiglass was pro-
duced having a thickness of approximately 1 mm.

With the furnace at operating temperature (216OOF), a water flow rate of
0.374 GPM was established through the 0.5 inch diameter quartz conduit. The
temperature of the water was determined both at the entrance and the exit of
the conduit. The average of several measurements indicated that the water
picked up 54.6 Btu/min of eneréy. This number includes the amount of energy
that was absorbed by the quartz wall, which in this case was 5.0 Btu/min.
Therefore, the net energy reaching the conduit was 49.6 Btu/min and corresponded
to a radiant heat flux at the quartz conduit wall of 21,500 Btu/hr ftz. This
method of determining the total radiant heat flux is considered more reliable than
the previous one using a thermocouple probe consisting of an exposed—and a
shielded thermocouple(l).

The calculations for the previously described technique using a thermo-

couple probe involved the use of the emissivity of the exposed bead, which,

(1) A. McAlister, H. C. Ward, A. F. Hidalgo and C. Orr, Jr., Heat Transfer to
a Gas Containing a Cloud of Particles, Semiannual Status Report No. 3,
Project No. A-635, Engineering Experiment Station, Georgia Institute of
Technology, Atlanta, Georgia, June 15, 1963, p. 33 ff.




unfortunately, was unknown. The surface of the bead was coated with a thin
layer of carbon particles and its emissivity was assumed to be 0.95. With

this assumption a distribution of the radiant heat flux along the quartz con-
duit was calculated for given conditions of free stream air velocity. Graphical
integration of this curve yielded an average radiation flux of T4l5 Btu/hr ftz.
Although this number is apparently seriously in error, the technique has the
value of indicating the profile of the radiation flux. That is, it revealed
that there were no sharp discontinuities at the ends and that the distribution

of energy was approximately flat for most of the length of the quartz conduit.

B. IEnergy Balance Procedures

l. BEnergy Balance at the Entrance of the Calorimeter

The energy absorbed by aerosols was determined by calorimetric measure-
ments. Two energy balances were employed. The first one was made between the
reference state and the thermal conditions at the entrance of the calorimeter.
Special methods were required to evaluate the temperatures.

The temperature of the aerosol itself was measured by a thermocouple in-
stalled 6.5 inches from the entrance of the calorimeter. Previous experiments
with this thermocouple were not successful because of radiation reaching into
the calorimeter. For these experiments, therefore, the thermocouple was pro-
tected from radiation by means of a shield installed at the end of the quartz
conduit. The temperature of the aerosol stream at the entrance of the calorim-
eter was calculated by assuming a linear temperature distribution for the aerosol
along the calorimeter. For each test this number was calculated from temperatures
measured 6.5 inches downstream from the entrance of the calorimeter and the
simultaneously determined temperature at the exit.

The energy balances were set up by taking the reference temperature as that




of the stream at the exit of the aerosol generator and was effectively the same
as the temperature of the aerosol at the entrance of the furnace. The base
temperature was assumed constant for the purpose of establishing energy balances.
Actually, variations in this temperature were present but never exceeded one or
two degrees over a period of several hours and not more than a few tenths of a
degree over the duration of a test.

With the temperatures described and a knowledge of the individual com-
ponents of the aerosol, energy balances over the entrance of the calorimeter
could be established. The enthalpy change of the air in the stream relative to

that of the air with no particles flowing is

T (Hi y Hi)A ) (Hi ) HZ)A (1)

where the subscripts {A,0,1) and superscripts (0,1) indicate the following:

A
o = the property evaluated at the furnace inlet,

a property of the air,

1 = the property evaluated at the calorimeter inlet;

o = evaluation when no particles are flowing,

1 = evaluation when particles are flowing.

With the assumption of a constant base temperature, Equation (1) simplifies to:

M, = H, - (2)

which in terms of temperatures is

_ — 1 o)
M, = (), (T, - TP (3)
where ‘EA is the average heat capacity of the air stream between the temper-
ature levels under consideration, and W is the mass flow rate of air.

A




The enthalpy change of the particle stream is given by the relation

AHlp - Hip - Hip ()

which may be expressed as:

= 1 1
MH = (wC)p ('I‘lp - Top) (5)

where the subscript p indicates a property of the particles, and Eb is the
average heat capacity of the particle material between the temperature levels
under consideration, and Wb is the powder flow rate.

The total enthalpy gain due to the absorption of energy by particles in the

radiant field is, finally, the sum

Miggay = Oy * A (6)

2. ©Energy Balance at the Exit of the Calorimeter

A thermocouple was installed at the end of the calorimeter to sense
the temperature of the aerosol stream as it left the calorimeter. A difference
thermocouple indicated the temperature rise of the cooling air as it passed
through the calorimeter. From a knowledge of these temperature readings and
the flow rates of the streams involved, a second energy balance was established
that included the heat exchange processes in the calorimeter. The total
balance is the sum of the heat effects in the air portion of the aerosol, the
particle, and the calorimeter coolant.

For the air composing the aeroscl, the enthalpy change relative to that

of the air when no particles are flowing is given by

S, = (- E), - (8 - ), (7)




where the subscript 3 indicates the property is evaluated at the calorimeter

exit.
Since the base temperature is constant, Equation (7) reduces to:
1 o
AﬁsA = H3A - HSA
or,

Ay, = (W), (T§A - T3Z)

The enthalpy change of the particle stream is
o]
M, = H -
3p 3p 7 Tp
which can be expressed as
1 o
)

T

The enthalpy change of the cooling air stream is
= o . - &
m = (), - LA - (2 )]

or,

&

(WE)C : A(ATC)

where,

alar ) = Loty - (a2%)]

The notation, A(ATC), indicates the difference in temperature rise of the

(8)

(9)

(10)

(11)

(12)

(13)

(1k4)

calorimeter coolant measured with and without particles in the aerosol stream.




The total enthalpy gain due to the flow of particles through the radiation

field is the sum,

Mpotar = Mgy * Ay, T AH, (15)

C. Particle Materials and Size Measurements

Particle clouds of powdered zinc in one size range and of ferrous sulfide
in three size ranges were studied and reported on previously. One additional
ferrous sulfide powder of another size range has been employed, and other
investigations have included alumina and cupric oxide powders.

Measurements were made of the minimum, maximum, and the mean particle
dimensions of each powder. The results are presented in Figures 1 through 5.
The distributions given are complete except for the maximum dimension for the
20 to 30 micron screen size ferrous sulfide and the 44 to 53 micron cupric
oxide. Statistical treatment of the data has not yet been completed for these.
The results are presented here to show the relative sizes of the materials and
their length-to-diameter characteristics. The information will be utilized in
future analyses when surface properties, mass mean diameters, and other param-
eters are developed.

The mean distributions were obtained so that the properties of the powders
could be treated on the assumption that the paf%icles were spheres with diam-
eters equivalent to the mean. The maximum and the minimum dimensions were
determined so that, in other calculations, the particles could be treated as
cylinders and the effect of particle irregularity could be taken into account.
The final results in each case will be significantly different because of the

differences in the surface and mass functions of the two geometric shapes.

10
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D. Heat Transfer Data

Accurate energy balances giving the heat gained by the particle clouds
require that the incoming streams not be preheated by contact with the conduit
walls. It is equally important that the system not be cooled bélow the intended
base temperature while in the entrance section. These conditions were met by
cooling the enbtrance section so as to keep its wall temperature constant. Tap
water was employed as the coolant in previously reported experiments. Except
for one experiment, the tap water temperature was sufficiently close to the
air temperature to give satisfactory results. For the tests using 30 to Ll
ferrous sulfide, the water was at a sub-normal temperature and the temperature
of the aerosol at the entfance of the furnace ha@ to be calculated. The numbers
obtained appear reasonably reliable when compared with the temperature of the

stream at the entrance of the furnace as determined experimentally(z). F

or
one test the temperature of the stream at the entrance of the furnace was used
as the base temperature for the energy balances. To avoid the recurrence of
this complication the apparatus was modified to use air in the precooler. The
air from the precooler was also employed to cool the calorimeter. This was
possible since the temperature rise of the cooling air on passing through the pre-
cooler was negligibly small. After this change the temperature of the aerosol
at the entrance of the furnace could always be assumed equal to its temperature
measured at the exit of the deagglomerator. .

Table I presents data for the 30 to 4hu ferrous sulfide. Tt is to be
noted that these data do not agree with results previously reported. The only

explanation is that an air leak in the system caused the concentration of powder

in the earlier tests to be higher than reported thus yielding a high radiation

(2) McAlister, A., et al., Op cit, p. 48.
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absorptance.

At this point in the experimental work, a radiation shield was developed
which could be installed at the exit of the aerosol stream from the furnace,
thereby preventing appreciable radiation from penetrating into the calorimeter.
For subsequent experiments, the temperature of the aercosol or air stream was
measured by a thermocouple located axially 6.5 in. from the entrance of the
calorimeter. Hence, by assuming a linear temperature distribution of the
aerosol stream through the calorimeter, it was possible to calculate the
aerosol's temperature at the entrance of the calorimeter. An energy balance
was then established for the entrance of the calorimeter as well as the exit.

Experiments were then performed with 20 to 30u micron ferrous sulfide.
Some were made with the shield removed and some with the shield in place to
detect any adverse effects of the modified system.. The data presented in
Table 1I were obtained without the shield in place and the data in Tables IIT
and ITI-A were obtained with it. Results from the modified system were in good
agreement with those of Table TI as well as those from previous experiments.
Figure 6 summarizes the data obtained for the ferrous sulfide. It represents
the radiation absorption as a function of concentration for several particle
size distributions.

Two experiments were next made using 53 to 88pu and 44 to 53u alumina
particles. Since this material is partly transparent, very small radiation
absorptances were obtained. Because some of the data appear to be outside
acceptable limits of uncertainty, they are not presented.

Fipally, cupric oxide was selected as a test material. Four size dis-
tributions were prepared by methods previously reported. Tables IV through VI

present the data obtained on the 53 to 88u, 44 to 53u,and 30 to 4y cupric oxide

18
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Figure 6. Radiant Energy Absorption by Ferrous Sulfide
Particle Clouds. The points are averages of
from 3 to 13 test results.
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aerosols, respectively, while Figure 7 presents the results graphically. An
additional experiment was carried out using 20 to 30u cupric oxide, but the data
obtained do not correlate well with previous tests using cupric oxide. The con-

centration of this powder may not have been measured correctly.

E. Thermal Absorption Efficlency

1. Estimates Assuming Isotropic Radiation

If the radiant flux within an aerosol can be determined and if the
particle surface area and the appropriate view factors are known, the thermal
absorption efficiency of the particle cloud may be calculated exactly. For
initial estimates, however, it was assumed that the radiation was isotropic, and
the particle-to-wall view factors were considered unity. These assumptions
were justified for estimations only, and were made to aid initial interpreta-
tiong of the experimental data. Particle surface areas were determined by
three methods: microscopic measurements, standard BET nitrogen adsorption, and
a modified procedure to be explained later.

The surface area data are presented in Table VIT, and the calculated
absorptivities based on these values and the assumptions involved are given in
Table VIII. Asshown, the absorptance efficiency is inversely proportional to
the surface area measurement; it ranges from very small values to greater than
unity. It was hoped that the estimated values might indicate the proper method
for determining surface area. Instead, the problem was complicated since plau-
gible arguments could be given to support any particular method. Absorptivities
based on Sm, the microscopic measurements, were large and variable. Such
variations in absorptivity, however, would not be expected since quantum effects,

which produce the changes, should not arise for such large particles. The
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TABLE VII

SURFACE ARFAS FOR POWDERED
MATERIALS DETERMINED BY DIFFERENT METHODS

Surface Areas, mz/gm

Screen Size

Material Désignation s (Sw—Sp)b sm°®
() (m®/gm) (n”/gm) (n®/gm)
FeS 53-88 0.13 0.04 0.016
FeS Lh.53 0.1k 0.05 0.02
FeS 30-kk 0.23 0.08 0.03
FeS 20-30 0.2k 0.08 0.05
Cuo 53-88 0.10 -0.07 0.015
Cu0 64-53 0.20 0.00 0.02
Cuo 30-kk 0.21 0.02 0.0k

& BET nitrogen adsorption surface area

Adjusted BET results (see text)’

Surface area from particle measurement.
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TABLE VIII

THERMAL ABSORPTION EFFICIENCY BASED
ON DIFFERENT METHODS OF SURFACE MEASUREMENT

Thermal Absorption Efficiency Based

.Sgizzn On Surface Areas Indicated by
Material Designation _Sw_ (sw-5p) _Sm__
FeS 53-88 0.14 0.5 1.18
FeS hh-53 0.18 0.5 0.86
FeS 30-L44 0.17 0.5 0.60
FeS 20-30 0.11 0.3 0.49
Cuo 53-88 -.08 - 0.53
Cu0O 4h-53 0.05 0.0 0.5k
Cul 30-Lh 0.06 0.7 0.33
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BET adsorption surface areas, Sw, on the other hand, yielded absorptivities much
too small. If it is considered that polished metal surfaces have absorptivities
around 0.05 to 0.07 and, with dull finishes, have values as high as 0.4, then,
ferrous sulfide and cupric oxide, both being non-conductors, should, according
to electromagnetic theory, have larger absorptivities. Eckert(B) gives 0.8 as
the absorptivity for low temperature radiation for cupric oxide.

Although factors other than the particle surface area can significantly
influence the results, it was suspected that the proper value had not been ob-
tained, and that the correct one lay between Sw and Sm. Normally, results
from microscopic measurements are smaller than obtained by other methods. This
is because the particles are assumed to have a regular geometry and the surface
calculated does not consider the irregularities in particle shape. BET results
can be too large since the total surface is measured and some of this surface
is internal, as in pores, surface cracks, and crystallographic imperfections.
The area associated with these internal irregularities can be studied by an
extended BET analysis generally referred to as a pore volume determination.

A number of experiments were performed to determine if the technique would be
useful in this study.

In a gas adsorption surface area measurement, a determination is made of
the number of molecules of a gas, usually nitrogen, required to cover a surface
with a monolayer of molecules. The total surface is evaluated assuming the
area covered by a single nitrogen molecule is known. By extending the adsorption
procedure beyond the mono-molecular coverage, attaining saturation, and then

desorbting to the monolayer state again, the portion of the surface that is

(3) E. R. G. Eckert and R. M. Drake, Jr., Heat and Mass Transfer, McGraw-Hill
Book Co., Inc., New York, 1959, p.377.
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internal can be estimated. The details of the procedure are reviewed else-
wnere ) (5).

Column four of Table VIII gives surface areas adjusted for porosity, i.e.,
(sw - Sp) values which represent the surface surrounding the particles. The
results appear in the order they were obtained. As shown, the earlier results
appear to yield good values for radiation absorptance efficiencies. However,
later measurements, principally those for cupric oxide, are not encouraging,
since OSp 1is as large as Sw and in some cases larger. These unrealistic.
results may be due to the presence of moisture in the adsorbate used. This
molsture would condense in the sample holder at liquid nitrogen temperature and
hence would not come off upon desorption. This explains the unreasonably high
pore surfaces obtained. The problem is still being investigated and considera-
tion is being given to a repeating of the experiments after steps have been
taken to avoid contamination of the adsorbate. Should the final BET results

prove unrealistic, it will be necessary to use statistical results from the

microscopic examinations.

2. Anisotropic Radiation

Since there are other factors which can affect the absorption ef-
ficiency of a particle cloud, the results of Table IX must be evaluated further.
Observations of experiments while in progress indicated that the particle clouds
had very large optical thicknesses. Hence it appeared that attenuation of

radiant energy, as a first approximation, might be neglected. As the next

(%) C. Orr, Jr., and J. M. DallaValle, Fine Particle Measurement, Size, Surface,

and Pore Volume, The Macmillan Co., New York, 1959, p. 257 f.

(5) P. H. Emett [editor], Catalysis, Vol. II, Fundamental Principles (Part 2),
New York, 1955, p. 105 T.
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step a development 1s being pursued which considers radiant energy attenuation
but still omits scattering effects. The approach being employed is to integrate
the basic relationship describing the exchange of radiant energy between two
elemental areas separated by a given distance which is a function of the posi-
tion of a particle within the radiation field and the point at which radiation
enters the particle cloud. The development is partially complete. The mechanics
of the integration process have been worked out but a final solution has not
been obtained.

Numerical results accounting for attenuation should be exact if there is
no scattering of radiant energy. It is anticipated that ammendments can be
made to approximate the effects of scattered radiation by changing the attenua-
tion function. Opecifically, if radiation can be considered to be represented

by

I = 1, ™ (16)

where I2 and I, are the intensities of radiation at positions two and one

1

along the straight line x and k 1is the attenuation constant, then

- -kix
I, = I, e (17)
where scattering is significant. kl is larger than k because each particle,
by virtue of scattering, adds to the energy proceeding in the x direction. If
a scattering function is assumed for a given particle, kl -can be evaluated

in terms of k , however.
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IV. FUTURE WORK

Future efforts will be concentrated on developing methods for calculating
the amount of radiant energy that a particle cloud should absorb in the ex-
perimental system. These calculations will be made first to account for radiant
energy attenuation within the cloud and second to estimate the effects of radia-
tion scattering by individual particles. It will then be possible to re-examine
the various methods of surface area determination and evaluate the one best .
suited for this problem.

The collection of additional experimental data will be resumed when the

theoretical developments permit evaluating the significance of the data already

collected.
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